Abstract
This study investigated the structure–activity relationships and kinetic properties of a library of kynurenate analogues as inhibitors of 3H- l-glutamate transport into rat forebrain synaptic vesicles. The lack of inhibitory activity observed with the majority of the monocyclic pyridine derivatives suggested that the second aromatic ring of the quinoline-based compounds played a significant role in binding to the transporter. A total of two kynurenate derivatives, xanthurenate and 7-chloro-kynurenate, differing only in the carbocyclic ring substituents, were identified as potent competitive inhibitors, exhibiting K i values of 0.19 and 0.59 mM, respectively. The K m value for l-glutamate was found to be 2.46 mM. Parallel experiments demonstrated that while none of the kynurenate analogues tested effectively inhibited the synaptosomal transport of 3H- d-aspartate, some cross-reactivity was observed with the EAA ionotropic receptors. Molecular modeling studies were carried out with the identified inhibitors and glutamate in an attempt to preliminarily define the pharmacophore of the vesicular transporter. It is hypothesized that the ability of the kynurenate analogues to bind to the transporter may be tied to the capacity of the quinoline carbocyclic ring to mimic the negative charge of the γ-carboxylate of glutamate. A total of two low energy solution conformers of glutamate were identified that exhibited marked functional group overlap with the most potent inhibitor, xanthurenate. These results help to further refine the pharmacological specificity of the glutamate binding site on the vesicular transporter and identify a series of inhibitors with which to investigate transporter function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.