Abstract

For all dimethylnaphthalenes (DMNs) the transition from a planar ring conformation to a nonplanar one results in energy increase in the range 1.7–2.4kcal/mol. There is a linear relationship between averaged rigidity constant and relative energy of DMNs. The relative stability of DMNs does not follow the aromatic stabilization based on NICS values. The ETS-NOCV analysis shows that more efficient bonding in the π-electron system is the origin of enhanced stability in laterally substituted (CH3, Cl and NO2) naphthalenes. The results for Caryl-CH3 system indicate more steric repulsion in going from 2,7-DMN to 1,8-DMN following the increase of relative energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.