Abstract

A series of sixteen pyrazinamide analogues with the -CONH- linker connecting the pyrazine and benzene rings was synthesized by the condensation of chlorides of substituted pyrazinecarboxylic acids with ring-substituted (chlorine) anilines and characterized. The results of in vitro antimycobacterial screening indicated some interesting antimycobacterial activity. 6-Chloro-N-(4-chlorophenyl)pyrazine-2-carboxamide (6) has shown the highest activity against Mycobacterium tuberculosis strain H37Rv (65% inhibition at 6.25 μg mL-1). The highest antifungal effect against Trichophyton mentagrophytes, the most susceptible fungal strain tested, was found for 6-chloro-5-tert-butyl-N-(3,4-dichlorophenyl)pyrazine-2-carboxamide (16) (MIC = 62.5 μmol mL-1). 6-Chloro-5-tert-butyl-N-(4-chlorophenyl)pyrazine-2-carboxamide (8) was the most active in the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts (IC50 = 43.0 μmol mL-1). The compounds were analyzed using RP-HPLC to determine lipophilicity. Optimal log P value for studied series was not confirmed.For all the compounds, the relationships between the lipophilicity and the chemical structure of the studied compounds are discussed, as well as their structure-activity relationships (SAR).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.