Abstract

Computer-aided drug design is among the most effective methods of medicinal chemistry. The above mentioned approach is used for the purposeful search of antiinflammatory agents among quinazoline condensed derivatives. The study aimed to conduct a purposeful synthesis of novel 3-R-2,8-dioxo-7,8-dihydro- 2H-pyrrolo[1,2-a][1,2,4]triazino[2,3-c]quinazoline-5a(6H)carboxylic acids and their salts as promising anti-inflammatory agents, evaluate their structure by physicochemical methods and establish their anti-inflammatory activity. The structures of target compounds were proposed due to their structure similarity to existing drugs and experimental agents with anti-inflammatory activities. The features of the synthesized compounds structures were evaluated by IR-, NMR spectroscopy and chromatography-mass spectrometry and discussed in detail. Probable molecular mechanisms of activity were predicted by molecular docking. The anti-inflammatory activity was determined by their ability to reduce the formalin- and carrageenan-induced paw edema in rats. It was found that the condensation of 3-(2-aminophenyl)-6-R-1,2,4-triazin-5(2H)ones with 2-oxoglutaric acid yielded 3-R-2,8-dioxo-7,8-dihydro-2H-pyrrolo[1,2-a][1,2,4]triazino[2,3-c]quinazoline- 5a(6H)carboxylic acids which may be considered as a promising anti-inflammatory agent. An in silico study showed that the obtained compounds revealed affinity to the molecular targets and corresponded to the drug-like criteria. Additionally docking study allowed to estimate the nature of interactions between synthesized compounds and molecular targets. The in vivo experiments showed that the obtained compounds demonstrated significant anti-inflammatory activity comparable or higher than the activity of the reference drug Diclofenac. The developed and implemented search strategy of the anti-inflammatory agents was justified. 3-R-2,8-dioxo-7,8-dihydro-2H-pyrrolo[1,2-a][1,2,4]triazino[2,3-c]quinazoline5a(6H)carboxylic acids possessed the anti-inflammatory activity and additional introduction of fluorine atoms in position 11 or 12 of the heterocyclic system led to amplification of this activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.