Abstract

Bacterial cell division occurs in conjunction with the formation of a cytokinetic Z-ring structure comprised of FtsZ subunits. Agents that disrupt Z-ring formation have the potential, through this unique mechanism, to be effective against several of the newly emerging multidrug-resistant strains of infectious bacteria. Several 1-phenylbenzo[c]phenanthridines exhibit notable antibacterial activity. Based upon their structural similarity to these compounds, a distinct series of substituted 1,6-diphenylnaphthalenes were synthesized and evaluated for antibacterial activity against Staphylococcus aureus and Enterococcus faecalis. In addition, the effect of select 1,6-diphenylnaphthalenes on the polymerization dynamics of S. aureus FtsZ and mammalian β-tubulin was also assessed. The presence of a basic functional group or a quaternary ammonium substituent on the 6-phenylnaphthalene was required for significant antibacterial activity. Diphenylnaphthalene derivatives that were active as antibiotics, did exert a pronounced effect on bacterial FtsZ polymerization and do not appear to cross-react with mammalian tubulin to any significant degree.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.