Abstract

After total larynx excision due to laryngeal cancer, the tracheoesophageal substitute tissue vibrations at the intersection between the pharynx and the esophagus [pharyngoesophageal segment (PE segment)] serve as voice generator. The quality of the substitute voice significantly depends on the vibratory characteristics of the PE segment. For improving voice rehabilitation, the relationship between the PE dynamics and the resulting substitute voice quality is a matter of particular interest. Precondition for a comprehensive analysis of this relationship is an objective quantification of the PE vibrations. For quantification purposes, a method is proposed, which is based on the reproduction of the tissue vibrations by means of a biomechanical model of the PE segment. An optimization procedure for an automatic determination of appropriate model parameters is suggested to adapt the model dynamics to tissue movements extracted from high-speed (HS) videos. The applicability of the optimization procedure is evaluated with ten synthetic data sets. A mean error of 8.2% for the determination of previously defined model parameters was achieved as well as an overall stability of 7.1%. The application of the model to six HS recordings presented a mean correlation of the vibration patterns of 82%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.