Abstract

Dimerizations of fulvene metal tricarbonyl complexes of the type (C5H4CRR')M(CO)3 (R, R' = MeO, Me, H; M = Cr, Mo, W) to form a metal-metal bond and a new carbon-carbon bond, thereby giving binuclear cyclopentadienyl metal carbonyl derivatives, are predicted to be thermochemically favored but to have significant activation energies ranging from ΔE = 19 to 42 kcal/mol. However, the introduction of dimethylamino but not methoxy substituents onto the exocyclic carbon atom changes the situation drastically so that the monomers [C5H4CH(NMe2)]M(CO)3 and [C5H4C(NMe2)2]M(CO)3 become strongly thermochemically favored, lying ΔE = 43 kcal/mol (M = W) to 63 kcal/mol (M = Cr) below their corresponding dimers. In such dimethylamino-substituted (fulvene)M(CO)3 derivatives, the M-C distance to the exocyclic fulvene carbon is lengthened beyond the bonding distance to give a zwitterionic structure with a pentahapto fulvene ligand. Such M-C distances in (fulvene)M(CO)3 complexes, which have preferred zwitterionic structures, increase with increasing solvent polarity (i.e., dielectric constant) until a saturation point is reached.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.