Abstract

The electrochemical water oxidation ability of complexes 5,15‐diphenylporphinatonickel(II) (A) and 5,15‐bis(3,5‐di‐tert‐butylphenyl)porphinatonickel(II) (B) in the oxygen evolution reaction (OER) have been investigated in an alkaline medium. Complex B was found to be kinetically and thermodynamically more active than complex A. The overpotential and Tafel slope of complex B are lower than those of complex A by 30 mV and around 45 mV/decade, respectively, which supports the higher activity of B. Moreover, stability tests endorse the sustainability of both samples under alkaline conditions. It has been found that the 3,5‐di‐tert‐butylphenyl substituent in B plays a decisive role in achieving a better OER onset potential and current than that obtained with A, which is a result of the modulation of the structural parameters of B. Furthermore, the measured OER activities of A and B have been correlated with their molecular arrangement as well as differences in their bonding characteristics and dipole moments. For further insight, the obtained results have been confirmed by a theoretical study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.