Abstract

Construction of porous solid materials applied to the adsorptive removal of CO2 from C2 hydrocarbons is highly demanded thanks to the important role C2 hydrocarbons play in the chemical industry but quite challenging owing to the similar physical parameters between C2 hydrocarbons and CO2. In particular, the development of synthetic strategies to simultaneously enhance the uptake capacity and adsorption selectivity is very difficult due to the trade-off effect frequently existing between both of them. In this work, a combination of the dicopper paddlewheel unit and 4-pyridylisophthalate derivatives bearing different substituents afforded an isoreticular family of coordination framework compounds as a platform. Their adsorption properties toward C2 hydrocarbons and CO2 were systematically investigated, and subsequent IAST and density functional theory calculations combined with column breakthrough experiments verified their promising potential for C2/CO2 separations. Furthermore, the substituent engineering endowed the resulting compounds with simultaneous enhancement of uptake capacity and adsorption selectivity and thus better C2/CO2 separation performance compared to their parent compound. The substituent introduction not only mitigated the framework distortion via fixing the ligand conformation for establishment of better permanent porosity required for gas adsorption but also polarized the framework surface for host-guest interaction improvement, thus resulting in enhanced separation performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call