Abstract

AbstractDensity functional theory (DFT) calculations were performed for a series of polynitrobenzene derivatives. Some nitrobenzenes with amino groups attached were also investigated as a benchmark or as a precursor. Heats of formation (HOF) were evaluated. The isodesmic reactions used for the prediction of HOFs are of permutation type in terms of the substituents. The HOFs increase non‐additively with increasing number of nitro groups. The attachment of the amino groups to polynitrobenzenes dramatically decreases the HOF. The HOF of hexanitrobenzene (HNB) is 344.05 kJ mol−1 at the B3LYP/6‐311+G** level. This value is much larger than that of the widely used 1,3,5‐triamino‐2,4,6‐trinitrobenzene (TATB), which engenders HNB a large chemical energy of detonation. The strengths of the group interactions were analyzed according to the disproportionation energy. The nearest‐neighbor interactions in polynitrobenzenes are in the range of 27.20–55.90 kJ mol−1. The energy barrier for the internal rotation of nitro group in nitrobenzene is 24.6 kJ mol−1. However, the energy barrier for the internal rotation of 2‐position nitro group of 1,2,3‐trinitrobenzene is as large as 216.3 kJ mol−1. The chemical energies of detonation for polynitrobenzenes with three or more nitro groups are over 6000 J g−1. Pentanitroaniline and HNB have good performances in terms of detonation velocity and pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.