Abstract

The effects of substituent X and Y on ultraviolet (UV) absorption properties of stilbene compounds XPhCHCHPhY (XSBY) were studied both experimentally and computationally from the viewpoint of UV maximum absorption wavelength (λmax) and the corresponding energy (υmax). In the studies, the contribution of substituents on υmax shift was explored. The results show that with increase of electron withdrawing or electron donating ability of X or Y, there is an enhanced electron delocalization of XSBY that leads to bathochromic shift. Computational analyses based on density functional theory were conducted to elucidate the phenomena. It is disclosed that the υmax values are significantly affected by the excited state, though the electronic effect of ground state cannot be ignored. Finally, on the basis of the respective influences of X and Y, a quantitative model, which was proved reliable by the leave-one-out method, was developed to scale the effects of terminal substituents on υmax. According to the model, the effects of substituents X or Y exhibit almost the same action on υmax owing to the symmetric skeleton of the XSBY compounds. The findings provide deep insight into the effects of terminal substituents on UV absorption properties of stilbene compounds, and the derived model enables practical expression of the relationship between substituents and UV absorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.