Abstract

Free radical oxidation of several 1,4-dienes was carried out in the presence of variable concentrations of alpha-tocopherol to investigate the effect of diene structure on product distribution. Oxidations carried out at low tocopherol concentration gave only C-1 and C-5 conjugated diene hydroperoxides, while higher concentrations of the antioxidant resulted in formation of substantial amounts of the nonconjugated C-3 diene hydroperoxide. Increasing size of the substituents at C-1 and C-5 of the diene favors kinetic products arising from oxygen addition at the nonconjugated position, C-3, of the pentadienyl radical intermediate. Substituents at C-1 or C-5 of the pentadienyl radical also have a significant effect on the regioselectivity of the conjugated diene hydroperoxides formed, larger substituents directing oxygen addition to the pentadienyl radical at the site of least steric hindrance. This trend is also observed in oxidations of omega-3 and omega-6 linolenate fatty acid esters. Groups at C-1 and C-5 of the diene can influence product distribution based upon (a) steric demand in the oxygen-radical reaction and (b) the influence of substituents on the rearrangement of the C-3 peroxyl radical to give conjugated diene products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call