Abstract
The photochemical dynamics of double-bond-containing hydrocarbons is exemplified by the smallest alkenes, ethylene and butadiene. Chemical substituents can alter both decay timescales and photoproducts through a combination of inertial effects due to substituent mass, steric effects due to substituent size, and electronic (or potential) effects due to perturbative changes to the electronic potential energy surface. Here, we demonstrate the interplay of different substituent effects on 1,3-butadiene and its methylated derivatives using a combination of ab initio simulation of nonadiabatic dynamics and time-resolved photoelectron spectroscopy. The purely inertial effects of methyl substitution are simulated through the use of mass 15 "heavy-hydrogen" atoms. As expected from both inertial and electronic influences, the excited-state dynamics is dominated by pyramidalization at the unsubstituted carbon sites. Although the electronic effects of methyl group substitution are weak, they alter both decay timescales and branching ratios by influencing the initial path taken by the excited wavepacket following photoexcitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.