Abstract

Different substituents and benzene ring numbers had significant effects on the fluorescence phenomenon of 2-aryloxazoline derivatives as observed in an experiment. Here, we select five 2-aryloxazoline derivatives with different substituents and benzene ring numbers (2u, 2ad, 2af, 2ai, and 2ah) to analyze the effects on the fluorescence phenomena. For 2ad, 2ah, and 2ai, first, the geometric structures are optimized based on the density functional theory and time-dependent density functional theory methods. The analysis of the obtained bond parameters reveals the variation of hydrogen bond interactions from S0 to S1 states. Second, the calculated absorption and emission spectra are consistent with the experimental values, which proves that the theoretical method is feasible. Finally, through the analysis of the infrared vibrational spectrum, reduced density gradient isosurfaces, frontier molecular orbitals, and potential energy curves, the strengthening mechanism of the hydrogen bond interaction and the ability of the excited-state intramolecular proton transfer (ESIPT) reaction to occur are further explained. Since the proton transfer reactions of 2u and 2af occur spontaneously under photoexcitation, they have no stable structures in the S1 state. In conclusion, due to the different substituents, 2u is more prone to the proton transfer reaction than 2ad. For 2af, 2ai, and 2ah with different benzene ring numbers, the ESIPT reaction is more difficult to occur as the number of benzene rings increases. The ability of the ESIPT reaction to occur follows the order 2af → 2ah → 2ai. For 2-aryloxazoline derivatives with different substituents or different benzene ring numbers, the hydrogen bond strengthening mechanism has been authenticated, which promotes the occurrence of the ESIPT reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call