Abstract

We report the synthesis of two fluoride bridged cobalt(ii) dimers - [Co(μ-F)(pnN4-PhCl)2(OH2)(MeCN)](BF4)3 (1) and [Co(μ-F)2(pnN4-PhCl)2](BF4)2 (2) - and related complexes derived from propyl-bridged N4 Schiff base plus pyridine ligands. Notably, the bridging fluoride ion(s) emanate from B-F abstraction processes on the BF4 anions in the starting salt, [Co(H2O)6](BF4)2. Two types of bridging motifs are generated - mono-bridged (μ-F) or di-bridged (μ-F)2- synthetically differentiated by the absence or presence of pyridine, respectively, during metalation. The synergistic roles of pyridine and the (ClPh)N4 ligand in promoting B-F abstraction were clarified by the isolation and crystallization of the simple tetrakis-pyridine monomeric complex [Co(py)4(MeCN)2](BF4)2 (4) [no B-F abstraction]; subsequent addition of the (ClPh)N4 ligand to 4 resulted in formation of the dimeric, di-bridged complex 2. Omission of pyridine during metalation resulted in formation of the mono-bridged dimer 1. The bulky chlorophenyl substituents were obligate for B-F abstraction, as metalation of the unsubstituted N4 ligand resulted in the non-fluoride-bridged dimer, [Co(pnN4)3](BF4)4 (3). In magnetic studies, complexes 1 (μeff = 6.24μB, 298 K) and 2 (μeff = 7.70μB, 298 K) both exhibit antiferromagnetic (AFM) coupling, but to different extents. Temperature-dependent magnetic susceptibility measurements (SQUID, 2 → 300 K) reveal that the linearity of the mono-fluoride bridge in 1 [∠Co-F-Co = 159.47(11)°] results in very strong AFM coupling (J = -14.9 cm(-1)). In contrast, the more acute Co2F2 diamond core [∠Co-F-Co = 98.8(2)°, 99.1(2)°] results in a smaller extent of AFM coupling (J = -2.97 cm(-1)). Overall, the results indicate the 'non-innocence' of the BF4 counterion in cobalt(ii) chemistry, and dimers 1 and 2 affirm the effect of the geometry of the bridging fluoride ion(s) in determining the extent of AFM coupling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.