Abstract

Substituent effects of iron porphyrin complexes on the structures and kinetic processes have been examined for the first time. Basing on the premise that iron porphyrin is functional analogous to heme, a series of iron porphyrin derivatives bearing different substituents at the meso positions of the corrole ring are investigated as to their electrochemistry, the relationships among the electron transfer (ET) processes, their structures, and orbital energies. The good coherence between the experiment and theory indicates that the ET rate can be accelerated when electron-donating substituents are introduced to the iron porphyrin ring. Finally, the implications of the results are discussed in the influence of stability of iron porphyrin complexes on the ability to carry molecular oxygen, which may suggest it possible to dominate the biological activity of heme by selecting the appropriate substituents to iron porphyrin ring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call