Abstract

The substituent effects on the ring-opening reaction of cyclobutene radical cations have been studied at the Becke3LYP/6-31G* level of theory. The effect on the reaction energies and activation energies of the concerted and stepwise pathways of electron-donating substituents such as methyl and methoxy as well as electron-withdrawing substituents such as nitrile and carboxaldehyde in the 3-position of the cyclobutene is discussed. The exothermicity of the reaction correlates well with the ability of the substituent to stabilize the 1,3-butadiene radical cation by electron donation or conjugation. The relative stability of the (E) and (Z) isomers of the resulting 1,3-butadiene radical cations depends largely on steric effects. Similarly, steric effects are responsible for the relative energies of the different diastereomeric transition structures. The cyclopropyl carbinyl intermediate of the stepwise pathway resembles the nonclassical carbocation and is stabilized by electron-donating substituents. In the case of electron-donating substituents, this species becomes a minimum on the potential energy hypersurface, whereas unstabilized or destabilized cyclopropyl carbinyl radical cations are not minima on the hypersurface. The stabilization of the cyclopropyl carbinyl radical cation by substituents correlates qualitatively with the Brown-Okamoto substituent parameter sigma+. However, in all cases studied here, the concerted mechanism is the lowest energy pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.