Abstract

The first series of persistent carbocations derived from mono- and disubstituted chrysenes Ch (5- methyl- 3, 2-methoxy- 19, 2-methoxy-11-methyl- 20, 2-methoxy-5-methyl- 21, and 9-methyl-4H-cyclopenta[def]chrysene 22), monosubstituted benzo[c]phenanthrenes BcPh (3-methoxy- 23, 3-hydroxy- 24), and monosubstituted benzo[g]chrysenes BgCh (12-methoxy- 25; 12-hydroxy- 26) were generated in FSO3H/SO2ClF or FSO3H-SbF5 (4:1)/SO2ClF and studied by low-temperature NMR at 500 MHz. The methoxy and methyl substituents direct the protonation to their respective ortho positions. Whereas parent Ch 1 is protonated at C-6/C-12, 3 is protonated at C-6 (3aH+) and at C-12 (3bH+) with the latter being the thermodynamic cation. The 2-methoxy-Ch 19 is protonated at C-1 to give two conformationally distinct carboxonium ions (19aH+/19bH+). In the disubstituted Ch derivatives 20 and 21, the 2-methoxy overrides the 5-methyl and the predominant carbocations formed are via attack ortho to methoxy. For the methano derivative 22 (Me at C-9), a 3:1 mixture of 22aH+/22bH+ is formed. For parent BcPh 13, nitration and benzoylation are directed to C-5. With 3-methoxy-BcPh 23, the site of attack moves to C-4, thus producing two conformationally distinct carboxonium ions (23aH+/23bH+), whereas conventional nitration gave a 2:1 mixture of 23aNO2 and 23bNO2. In 3-hydroxy-BcPh 24, the carboxonium ion 24H+ is exclusively formed. For parent BgCh 16, protonation, nitration, and benzoylation are all directed to C-10 (16H+, 16NO2, 16COPh), but presence of OMe or OH substituent at C-12 changes the site of attack to C-11. Charge delocalization mode is probed based on magnitude of delta delta 13Cs and conformational aspects via NOED experiments. Complete NMR data are also reported for several benzoylation/nitration products. Using ab initio/GIAO (and NICS), the NMR chemical shifts (and aromaticity) in model carbocations A-D were evaluated. This work represents the first direct study of the carbocations derived from the methyl-, methoxy-/hydroxy-derivatives of three important classes of bay-region and fjord-region PAHs whose diol-epoxides extensively bind to DNA. It also extends the available data on electrophilic chemistry of BcPh and BgCh.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.