Abstract

ABSTRACTA series of N‐aryl‐N′‐pyridyl ureas were synthesized by the reactions of 4‐aminopyridine (4AP) with the corresponding isocyanates such as phenyl isocyanate, 4‐methylphenyl isocyanate, 4‐methoxyphenyl isocyanate, 4‐chlorophenyl isocyanate, 4‐(trifluoromethyl)phenyl isocyanate, and 4‐nitrophenyl isocyanate. Bulk polymerization of diglycidyl ether of bisphenol A (DGEBA) in the presence of the ureas as initiators was evaluated by differential scanning calorimetry (DSC) at a heating rate of 10 °C/min. The resulting DSC profiles indicated exothermic peaks above 140 °C, while the DSC profile measured for a formulation composed of DGEBA and pristine 4AP indicated an exothermic peak at around 120 °C, implying that the derivation of 4AP into the corresponding ureas is a useful strategy to achieve thermal latency. The peak top temperatures were correlated with the electron density of the aromatic ring of the ureas, that is, as the electron‐withdrawing nature of the substituent on the aromatic ring became larger, the peak increases. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 2569–2574

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call