Abstract

Five triphenyltriphenylamines with various substituents were investigated as precursors for near-infrared absorbing materials. Cyclic voltammetry (CV) studies showed that they all give stable radical cations in solution. The radical cations obtained by one-electron chemical oxidation of these compounds show strong absorption in the near-infrared region, and the position of the absorption is strongly influenced by the substituent. DFT (density functional theory) calculations suggest that the introduction of stronger electron-donating substituents would result in a smaller HOMO–SOMO energy gap and thus a larger long wavelength shift, which is consistent with the experimental results. On the other hand, strong electron-withdrawing substituents increase the HOMO–SOMO energy gap, resulting in a short wavelength shift. The position of the near-infrared absorption peak of the triphenylamine radical cation can be controlled to the longer or shorter wavelength direction depending on the substituent. A molecular design of near-infrared absorbing dyes utilizing the electronic effects of substituents is described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.