Abstract
The electrochemical oxidation and reduction potentials of a number of substituted 1-methylnaphthalenes (1a-l) and 1-naphthylmethyl radicals (2a-l•) as well as 2-methylnaphthalene (3) and the 2-naphthylmethyl radical (4•) have been measured by cyclic voltammetry and photomodulation voltammetry. The oxidation potentials correlate with σ+ (ρ+ = −7.1 and −8.4 for 1 and 2• respectively) while the reduction potentials correlate with σ− (ρ− = 10.1 and 13.0 for 1 and 2• respectively). The relative magnitude of the ρ values can be rationalized when the charge density distribution in these systems is considered. This leads to the interesting conclusion that even though a full charge is placed in the π-system of 1 when it is oxidized or reduced, the fraction of the charge that accumulates at C4 is actually less than in 2+ or 2− where only 50–70% of the charge is delocalized into the ring. A correlation between ρ for the redox reactions of 1, 2•, benzyl, diphenylmethyl, and cumyl and the calculated (AM1) charge density at C4 is established, implying that the sensitivity of the corresponding ions to substituent effects increases as the fraction of charge at that site increases. The redox data have been used in thermochemical cycles in order to estimate the substituent effect on the homolytic, mesolytic, and heterolytic cleavage reactions of 1 and its corresponding radical ions. The implication of these results on the C—C cleavage versus deprotonation of radical cations and on the photochemical homolysis versus heterolysis of naphthylmethyl halides and acetates is discussed. Keywords: electrochemistry, homolysis, heterolysis, naphthylmethyl, substituent effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.