Abstract

When material changes in burnup calculations are solved by evaluating an explicit solution to the Bateman equations with constant microscopic reaction rates, one has to first predict the development of the reaction rates during the step and then further approximate these predictions with their averages in the depletion calculation. Representing the continuously changing reaction rates with their averages results in some error regardless of how accurately their development was predicted. Since neutronics solutions tend to be computationally expensive, steps in typical calculations are long and the resulting discretization errors significant. In this paper we present a simple solution to reducing these errors: the depletion steps are divided to substeps that are solved sequentially, allowing finer discretization of the reaction rates without additional neutronics solutions. This greatly reduces the discretization errors and, at least when combined with Monte Carlo neutronics, causes only minor slowdown as neutronics dominates the total running time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.