Abstract
With the continuous promotion of smart substations, staff fall detection has become a key issue in automatic detection of substations. The injuries and safety hazards caused by falls among substation personnel are numerous. If a timely response can be made in the event of a fall, the injuries caused by falls can be reduced. In order to address the issues of low accuracy and poor real-time performance in detecting human falls in complex substation scenarios, this paper proposes an improved algorithm based on YOLOX. A customized feature extraction module is introduced to the YOLOX feature fusion network to extract diverse multiscale features. A recursive gated convolutional module is added to the head to enhance the expressive power of the features. Meanwhile, the SIoU(Soft Intersection over Union) loss function is utilized to provide more accurate position information for bounding boxes, thereby improving the model accuracy. Experimental results show that the improved algorithm achieves an mAP value of 78.45%, which is a 1.31% improvement over the original YOLOX. Compared to other similar algorithms, the proposed algorithm achieves high accuracy prediction of human falls with fewer parameters, demonstrating its effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.