Abstract

New design solutions, technologies and materials are required to improve tactical and technical characteristics of military equipment. Often this implies operation in such conditions as contact interaction and elasto-plastic deformations of materials. New models and research methods are developed for better utilization of modern materials and improved performance of military equipment. They account directly for complex physical and structural nonlinearities. The properties of conventional and novel materials are determined both in bulk and on surfaces at microstructural level. This will enable physically adequate and mathematically correct analysis of stress-strain state. The new advanced design solutions will emerge through the objective-driven search by means of parametric modeling. The project will extend traditional local problem statements with newly developed variational principles that account for structural and physical nonlinearity and are suitable for parameterization. This will create the basis for fundamental analysis of torsion bar suspensions, hydrovolumetric and gear drives and other crucial components of combat vehicles, engineering solutions for domestic manufacturers of military equipment that will bring their tactical and technical characteristics to highest modern standards.
 Keywords: contact interaction; stress-strain state; intermediate layer; contact pressure; contact area; plastic deformation

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.