Abstract

Estimation of the prevalence and contagiousness of undocumented novel coronavirus [severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2)] infections is critical for understanding the overall prevalence and pandemic potential of this disease. Here, we use observations of reported infection within China, in conjunction with mobility data, a networked dynamic metapopulation model, and Bayesian inference, to infer critical epidemiological characteristics associated with SARS-CoV-2, including the fraction of undocumented infections and their contagiousness. We estimate that 86% of all infections were undocumented [95% credible interval (CI): 82-90%] before the 23 January 2020 travel restrictions. The transmission rate of undocumented infections per person was 55% the transmission rate of documented infections (95% CI: 46-62%), yet, because of their greater numbers, undocumented infections were the source of 79% of the documented cases. These findings explain the rapid geographic spread of SARS-CoV-2 and indicate that containment of this virus will be particularly challenging.

Highlights

  • Estimation of the prevalence and contagiousness of undocumented novel coronavirus [severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2)] infections is critical for understanding the overall prevalence and pandemic potential of this disease

  • The fraction of undocumented but infectious cases is a critical epidemiological characteristic that modulates the pandemic potential of an emergent respiratory virus [3,4,5,6]

  • We developed a mathematical model that simulates the spatiotemporal dynamics of infections among 375 Chinese cities

Read more

Summary

RESEARCH ARTICLE

Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). We use observations of reported infection within China, in conjunction with mobility data, a networked dynamic metapopulation model, and Bayesian inference, to infer critical epidemiological characteristics associated with SARS-CoV-2, including the fraction of undocumented infections and their contagiousness. To infer SARS-CoV-2 transmission dynamics during the early stage of the outbreak, we simulated observations during 10–23 January 2020 (i.e., the period before the initiation of travel restrictions) The system could identify a variety of parameter combinations and distinguish outbreaks generated with high a and low m from those generated with low a and high m This parameter identifiability is facilitated by the assimilation of observed case data from multiple [375] cities into the modelinference system and the incorporation of human movement into the mathematical model structure

Basic reproductive number
AND NOTES
Findings
Ruiyun LiSen PeiBin ChenYimeng SongTao ZhangWan YangJeffrey Shaman
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.