Abstract

Developing a straightforward method to remove pesticide residues from fruits is essential for food safety. In this study, ozone microbubble treatment was performed on three fruits (strawberry, cherry, and apricot) to remove four pesticide residues (emamectin benzoate, azoxystrobin, boscalid, and difenoconazole) while comparing removal efficiency. The concentration of hydroxyl radicals in different washing orientations was homogeneous at a concentration ranging between 8.9 and 10.2 μmol·L-1. Under long washing time (18 min), strawberry, cherry, and apricot obtained higher removal rates of 51 %∼65 %, 51 %∼59 % and 24 %∼70 %, respectively. Moreover, scanning electron microscopy (SEM) and contact angle (CA) revealed that apricot has better hydrophobicity, leading to a higher pesticide removal of 45 ∼ 84 % with less water and more vigorous washing. Notably, vitamin C content in fruits remain largely unchanged following ozone microbubble treatment. This study demonstrated the effectiveness of ozone microbubble treatment as pollution-free method for enhancing food safety by removing pesticide residues on fruits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call