Abstract

Great interest in current-induced magnetic excitation and switching in a magnetic nanopillar has been caused by the theoretical predictions of these phenomena. The concept of using a spin-polarized current to switch the magnetization orientation of a magnetic layer provides a possible way to realize future 'current-driven' devices: in such devices, direct switching of the magnetic memory bits would be produced by a local current application, instead of by a magnetic field generated by attached wires. Until now, all the reported work on current-induced magnetization switching has been concentrated on a simple ferromagnet/Cu/ferromagnet trilayer. Here we report the observation of current-induced magnetization switching in exchange-biased spin valves (ESPVs) at room temperature. The ESPVs clearly show current-induced magnetization switching behaviour under a sweeping direct current with a very high density. We show that insertion of a ruthenium layer between an ESPV nanopillar and the top electrode effectively decreases the critical current density from about 10(8) to 10(7) A cm(-2). In a well-designed 'antisymmetric' ESPV structure, this critical current density can be further reduced to 2 x 10(6) A cm(-2). We believe that the substantial reduction of critical current could make it possible for current-induced magnetization switching to be directly applied in spintronic devices, such as magnetic random-access memory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.