Abstract

Far-red absorbing chlorophylls are constitutively present as chlorophyll (Chl) d in the cyanobacterium Acaryochloris marina, or dynamically expressed by synthesis of Chl f, red-shifted phycobiliproteins and minor amounts of Chl d via far-red light photoacclimation in a range of cyanobacteria, which enables them to use near-infrared-radiation (NIR) for oxygenic photosynthesis. While the biochemistry and molecular physiology of Chl f-containing cyanobacteria has been unraveled in culture studies, their ecological significance remains unexplored and no data on their in situ activity exist. With a novel combination of hyperspectral imaging, confocal laser scanning microscopy, and nanoparticle-based O2 imaging, we demonstrate substantial NIR-driven oxygenic photosynthesis by endolithic, Chl f-containing cyanobacteria within natural beachrock biofilms that are widespread on (sub)tropical coastlines. This indicates an important role of NIR-driven oxygenic photosynthesis in primary production of endolithic and other shaded habitats.

Highlights

  • Far-red absorbing chlorophylls are constitutively present as chlorophyll (Chl) d in the cyanobacterium Acaryochloris marina, or dynamically expressed by synthesis of Chl f, red-shifted phycobiliproteins and minor amounts of Chl d via far-red light photoacclimation in a range of cyanobacteria, which enables them to use near-infrared-radiation (NIR) for oxygenic photosynthesis

  • Hyperspectral reflectance imaging on vertical cross-sections of beachrock submerged in seawater (23 ̊C and salinity = 35) revealed the presence of a dense ~1 mm thick surface biofilm with high amounts of Chl a, while a more patchy zone containing Chl f, and less Chl a was found below the Figure 1 continued on page

  • Based on O2 concentration images recorded at 5 min intervals after experimental light-dark shifts, we calculated images of apparent dark respiration and NIR-driven net and gross photosynthesis that could be mapped onto the beachrock structure (Figure 2A–D) showing that hotspots of activity aligned with the presence of Chl f

Read more

Summary

Introduction

The persisting textbook notion that oxygenic photosynthesis is mainly driven by visible wavelengths of light (400–700 nm) and chlorophyll (Chl) a as the major photopigment is challenged; recent findings indicate that cyanobacteria with red-shifted chlorophylls and phycobiliproteins capable of harvesting near-infrared-radiation (NIR) at wavelengths > 700–760 nm and exhibiting a pronounced plasticity in their photoacclimatory responses (Gan et al, 2014; Gan and Bryant, 2015) are widespread in natural habitats (Gan et al, 2015; Zhang et al, 2019; Behrendt et al, 2019). With a novel combination of hyperspectral imaging, confocal laser scanning microscopy, and nanoparticle-based O2 imaging, we demonstrate substantial NIR-driven oxygenic photosynthesis by endolithic, Chl f-containing cyanobacteria within natural beachrock biofilms that are widespread on (sub)tropical coastlines.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.