Abstract

AbstractIncreases in the frequency and intensity of heat waves have serious impacts on human health, agriculture, energy and infrastructure. Here we use three simple metrics including the number of heat wave days, the length of heat wave season, and the annual hottest day temperature to characterize future changes in heat wave severity in China, based on large ensemble simulations conducted with the Canadian Earth System Model Version 2 (CanESM2) in the context of emergency preparedness. A heat wave day is defined as a day with daily maximum temperature reaching heat alert level (35 °C). We find that global warming is associated with more severe heat waves including more heat wave days, longer heat wave season and higher hottest day temperature, and expansion of regions impacted by heat waves. While the increase in the magnitude of extremes in heat wave metrics with global warming level is close to linear, the increase in the frequency of extremes is much faster. For example, the historically hottest summer in 2013 in Eastern China, which occurs about one in 5 years in the 2013 climate, is projected to become more frequent than one in 2 years under 1.5 °C global warming and almost every year would be worse than 2013 under 2 °C warming. Additionally, the increase in the frequency of the extreme events is larger for rarer extremes. The frequencies for once‐in‐5‐year, once‐in‐10‐year, and once‐in‐50‐year events increase by 2.5, 3.5, and 5.5 times under 1.5 °C global warming, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.