Abstract

AbstractBiosynthesis of D‐allulose has been achieved using ketose 3‐epimerases (KEases), but its application is limited by poor catalytic performance. In this study, we redesigned a genetically encoded biosensor based on a D‐allulose‐responsive transcriptional regulator for real‐time monitoring of D‐allulose. An ultrahigh‐throughput droplet‐based microfluidic screening platform was further constructed by coupling with this D‐allulose‐detecting biosensor for the directed evolution of the KEases. Structural analysis ofSinorhizobium frediiD‐allulose 3‐epimerase (SfDAE) revealed that a highly flexible helix/loop region exposes or occludes the catalytic center as an essential lid conformation regulating substrate recognition. We reprogrammed SfDAE using structure‐guided rational design and directed evolution, in which a mutant M3‐2 was identified with 17‐fold enhanced catalytic efficiency. Our research offers a paradigm for the design and optimization of a biosensor‐based microdroplet screening platform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.