Abstract
Chlorinated polyfluorocarboxylic acids (Cl-PFCAs) derived from the widely used chlorotrifluoroethylene (CTFE) polymers and oligomers may enter and influence the aquatic environment. Here, we report significant defluorination of Cl-PFCAs by an anaerobic microbial community via novel pathways triggered by anaerobic microbial dechlorination. Cl-PFCAs first underwent microbial reductive, hydrolytic, and eliminative dechlorination, and it was the hydrolytic dechlorination that led to significant spontaneous defluorination. Hydrolytic dechlorination was favored with increased Cl-substitutions. An isolated, highly enriched anaerobic defluorinating culture was dominated by two genomes closest to Desulfovibrio aminophilus and Sporomusa sphaeroides, both of which exhibited active defluorination of CTFE tetramer acid. It implies the critical role played by anaerobic non-respiratory hydrolytic dechlorination in the fate of chlorinated polyfluoro-chemicals in natural and engineered water environments. The greatly enhanced biodegradability by Cl-substitutions also sheds light on the design of cost-effective treatment biotechnologies, as well as alternative PFAS that are readily biodegradable and less toxic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.