Abstract

In the Arctic, impurities in the atmosphere and cryosphere can strongly affect the atmospheric radiation and surface energy balance. While black carbon has hence received much attention, mineral dust has been in the background. Mineral dust is not only transported into the Arctic from remote regions but also, possibly increasingly, generated in the region itself. Here we study mineral dust in the Arctic based on global transport model simulations. For this, we have developed a dust mobilization scheme in combination with the Lagrangian particle dispersion model FLEXPART. A model evaluation, based on measurements of surface concentrations and annual deposition at a number of stations and aircraft vertical profiles, shows the suitability of this model to study global dust transport. Simulations indicate that about 3% of global dust emission originates from high‐latitude dust sources in the Arctic. Due to limited convection and enhanced efficiency of removal, dust emitted in these source regions is mostly deposited closer to the source than dust from for instance Asia or Africa. This leads to dominant contributions of local dust sources to total surface dust concentrations (~85%) and dust deposition (~90%) in the Arctic region. Dust deposition from local sources peaks in autumn, while dust deposition from remote sources occurs mainly in spring in the Arctic. With increasing altitude, remote sources become more important for dust concentrations as well as deposition. Therefore, total atmospheric dust loads in the Arctic are strongly influenced by Asian (~38%) and African (~32%) dust, whereas local dust contributes only 27%. Dust loads are thus largest in spring when remote dust is efficiently transported into the Arctic. Overall, our study shows that contributions of local dust sources are more important in the Arctic than previously thought, particularly with respect to surface concentrations and dust deposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.