Abstract

Censored outcome data are commonly encountered in criminology. Criminologists sometimes use the tobit model to address these censored data. While tobit models make more realistic demands of censored outcome data than ordinary least squares (OLS) regression, they require the researcher to make strong distributional assumptions. When these assumptions are not met, as is often the case in criminological data, tobit models yield biased and inconsistent estimates. We seek to demonstrate this substantial bias in simulation analyses and present easily applied alternative methods. The tobit model and semiparametric alternatives for censored outcome data are applied with simulated data under varying conditions. These simulations are followed with an empirical example using sentencing data. The bias from tobit can be corrected through application of semiparametric alternatives. Criminologists should begin their analyses of censored outcome data with the least restrictive of the available models (CLAD) before progressing to more efficient, but potentially biased, estimators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.