Abstract

A new approach to bioelectronic Sense-and-Act systems was developed with the use of modified electrodes performing sensing and substance-releasing functions. The sensing electrode was activated by biomolecular/biological signals ranging from small biomolecules to proteins and bacterial cells. The activated sensing electrode generated reductive potential and current, which stimulated dissolution of an Fe(3+)-cross-linked alginate matrix on the second connected electrode resulting in the release of loaded biochemical species with different functionalities. Drug-mimicking species, antibacterial drugs, and enzymes activating a biofuel cell were released and tested for various biomedical and biotechnological applications. The studied systems offer great versatility for future applications in controlled drug release and personalized medicine. Their future applications in implantable devices with autonomous operation are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.