Abstract

The mechanism of action of drugs of abuse like cocaine and amphetamines has been studied extensively in the dopamine terminal field areas of the caudate-putamen (CPu) and the nucleus accumbens (NAc) of the rodent brain. These brain regions contain several neuropeptides that must play important roles in the normal physiological functions of these brain regions. The study of neuropeptide physiology in the context of the neurobiological responses to drugs of abuse may shed some light on the intrinsic mechanism of action of neuropeptides of the CPu and the NAc. The neuropeptides substance P (SP) and cholecystokinin (CCK) are present in the striatum where they could play an important role regulating the effects of psychostimulants like cocaine and amphetamines (methamphetamine [METH] is a long acting derivative of d-amphetamine). These highly addictive agents induce the release of dopamine (DA) (and other catecholamines) from dopaminergic terminals of the striatum. The excessive release of DA in the striatum and the NAc has been implicated in the habit-forming properties of these drugs. In order to study the contribution of SP and CCK in the striatum during psychostimulant treatment, we employed selective non-peptide neurokinin-1 (NK-1) and cholecystokinin-2 (CCK-2) receptor antagonists that readily cross the blood brain barrier. We infused the neurokinin-1 receptor (NK-1R) antagonist, L-733,060, into the striatum of freely moving rats via a microdialysis probe in order to assess the effects of SP on cocaine-induced DA overflow in the striatum. Infusion of the NK-1R antagonist prior to a systemic injection of cocaine (10 mg/kg i.p.) significantly attenuated DA overflow in the striatum. Conversely, infusion of a CCK-2 receptor (CCK-2R) antagonist, L-369,293, through the microdialysis probe evoked DA overflow in the striatum in the absence of cocaine and potentiated DA overflow after a single injection of cocaine (10 mg/kg i.p.). Exposure to METH (10 mg/kg 4× at two-hour intervals) produced deficits of dopamine transporters (DAT) in mice striatum that are detectable three days after the treatment and are long lasting. Pre-treatment (i.p. injections) with the NK-1R antagonist, WIN-51,708 30 minutes before the 1st and 4th injections of METH prevented the loss of DAT in the striatum. Moreover, pre-treatment with the NK-1R antagonist prevents METH-induced cell death. Taken together, these results demonstrate that the NK-1R and the CCK-2R are important modulators of the actions of the psychostimulants cocaine and METH. Neuropeptide receptors represent an important control point mediating the effects of the neurotransmitter DA in the striatum of the rodent brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call