Abstract

1. The distribution and microvascular effects of substance P (SP) and calcitonin gene-related peptide (CGRP) were studied in the rabbit tenuissimus muscle using immunohistochemistry and intravital microscopy. 2. Individual fibers within nerve bundles and along blood vessels in the muscle were found to be immunoreactive (IR) for both SP and CGRP, thus showing an apparently complete coexistence for these peptides. In dorsal root ganglia most SP-positive cells were also CGRP-IR, but the latter cells were somewhat more numerous than SP-IR cells. 3. When applied topically to the muscle, both SP and CGRP increased blood flow in a dose-dependent manner, but CGRP was more potent and caused responses of longer duration. Both SP and CGRP dilated transverse arterioles, but they had little or no effect on the smaller terminal arterioles. This resulted in a redistribution of blood flow to the connective tissue adjacent to the muscle. 4. SP, but not CGRP, elicited vigorous vasomotion in larger arterioles and caused the formation of aggregates of platelets and leukocytes in the venules. Neither flow increase, nor vasomotion or aggregate formation were influenced by pretreatment of the animals with mepyramine, cimetidine or indomethacin. Capsaicin (1 microM) had a powerful effect on transverse arterioles resembling that of both SP and CGRP. 5. It is concluded that some of the vascular effects hitherto ascribed to SP on the basis of nerve stimulation and application of capsaicin might, at least in part, be due to release of CGRP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call