Abstract

Automatic face recognition is a challenging problem in the biometrics area, where the dimension of the sample space is typically larger than the number of samples in the training set and consequently the so-called small sample size problem exists. Recently, neuroscientists emphasized the manifold ways of perception, and showed the face images may reside on a nonlinear submanifold hidden in the image space. Many manifold learning methods, such as Isometric feature mapping, Locally Linear Embedding, and Locally Linear Coordination are proposed. These methods achieved the submanifold by collectively analyzing the overlapped local neighborhoods and all claimed to be superior to such subspace methods as Eigenfaces and Fisherfaces in terms of classification accuracy. However, in literature, no systematic comparative study for face recognition is performed among them. In this paper, we carry out a comparative study in face recognition among them, and the study considers theoretical aspects as well as simulations performed using CMU PIE and FERET face databases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.