Abstract

Background and purposeUltrasound imaging is a very essential technique in medical diagnosis due to its being safe, economical and non-invasive nature. Despite its popularity, the US images, however, are corrupted with speckle noise, which reduces US images qualities, hampering image interpretation and processing stage. Hence, there are many efforts made by researches to formulate various despeckling methods for speckle reduction in US images.MethodsIn this paper, a subspace-based speckle reduction technique in ultrasound images is proposed. The fundamental principle of subspace-based despeckling technique is to convert multiplicative speckle noise into additive via logarithmic transformation, then to decompose the vector space of the noisy image into signal and noise subspaces. Image enhancement is achieved by nulling the noise subspace and estimating the clean image from the remaining signal subspace. Linear estimation of the clean image is derived by minimizing image distortion while maintaining the residual noise energy below some given threshold. The real US data for validation purposes were acquired under the IRB protocol (200210851-7) at the University of California Davis, which is also consistent with NIH requirements.ResultsExperiments are carried out using a synthetically generated B-mode ultrasound image, a computer generated cyst image and real ultrasound images. The performance of the proposed technique is compared with Lee, homomorphic wavelet and squeeze box filter (SBF) in terms of noise variance reduction, mean preservation, texture preservation and ultrasound despeckling assessment index (USDSAI). The results indicate better noise reduction capability with the simulated images by the SDC than Lee, Wavelet and SBF in addition to less blurry effect. With the real case scenario, the SDC, Lee, Wavelet and SBF are tested with images obtained from raw radio frequency (RF) data. Results generated using real US data indicate that, in addition to good contrast enhancement, the autocorrelation results shows better preservation of image texture by SDC than Lee, Wavelet and SBF.ConclusionIn general, the performance of the SDC filter is better than Lee, Wavelet and SBF in terms of noise reduction, improvement in image contrast and preservation of the autocorrelation profiles. Furthermore, the filter required less computational time compared to Lee, Wavelet and SBF, which indicates its suitability for real time application.

Highlights

  • Ultrasound (US) imaging is one of the most commonly used medical imaging due for diagnostic purposes to its many advantages such as portability, the noninvasive nature, relatively low cost and presents no radiation risk to patient

  • With a known noise-free image, the performance of spatial-domain constraint (SDC) is measured in terms of Peak Signal-to-Noise Ratio (PSNR) defined as PSNR = 20 log10

  • The proposed technique, SDC is based on linear estimator and rank reduced subspace model to estimate the clean image from the corrupted one with speckle noise

Read more

Summary

Introduction

Ultrasound (US) imaging is one of the most commonly used medical imaging due for diagnostic purposes to its many advantages such as portability, the noninvasive nature, relatively low cost and presents no radiation risk to patient. These features have made the US imaging as the most prevalent diagnostic tool for health practitioners over other more sophisticated imaging techniques such as CT scan, MRI or PET. The scattered pulse is received by the same probe to produce echo signals which are processed to form two-dimensional images, known as sonogram. This two-dimensional anatomical maps are called B-mode (brightness) images [2]. There are many efforts made by researches to formulate various despeckling methods for speckle reduction in US images

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.