Abstract

The automotive industry has accelerated the utilization of Intelligent Transport Systems (ITS) in vehicles for increased driving safety. In this paper, a novel and well-done subspace feature extraction scheme on the physiological signals acquired by wearable sensors, for drivers’ distress level detection to be introduced as an ITS is proposed and verified on the publicly available MIT-BIH PhysioNet Multi-parameter Database. The proposed scheme includes two phases where time-domain statistical feature extraction is first realized on the electrocardiogram (ECG), hand galvanic skin response (hand GSR), foot galvanic skin response (foot GSR), electromyogram (EMG), and respiration (RESP) signals, and secondly subspace feature vector construction is appreciated by applying Discriminative Common Vector (DCV) decomposition on the statistical feature vectors. The distress levels of the drivers are determined as low, moderate, and high by utilizing both the statistical and the subspace feature vectors using Support Vector Machines (SVM) classifier by 2-fold cross-validation technique. A maximum of 88.89 % classification accuracy is achieved using statistical features in 7384 s while it is increased to 100 % in 3,421 s when subspace features are employed. The increased classification accuracy in decreased time consumption evidently shows the success of the proposed feature extraction scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.