Abstract

Microarray technology enables the collection of vast amounts of gene expression data from biological experiments. Clustering algorithms have been successfully applied to exploring the gene expression data. Since a set of genes may be only correlated to a subset of samples, it is useful to use co-clustering to recover co-clusters in the gene expression data. In this paper, we propose a novel algorithm, called Subspace Weighting Co-Clustering (SWCC), for high dimensional gene expression data. In SWCC, a gene subspace weight matrix is introduced to identify the contribution of gene objects in distinguishing different sample clusters. We design a new co-clustering objective function to recover the co-clusters in the gene expression data, in which the subspace weight matrix is introduced. An iterative algorithm is developed to solve the objective function, in which the subspace weight matrix is automatically computed during the iterative co-clustering process. Our empirical study shows encouraging results of the proposed algorithm in comparison with six state-of-the-art clustering algorithms on ten gene expression data sets. We also propose to use SWCC for gene clustering and selection. The experimental results show that the selected genes can improve the classification performance of Random Forests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.