Abstract
We present a subspace surface hopping strategy to deal with complex surface crossings in nonadiabatic dynamics. By focusing on only important adiabatic states, we make subspace crossing correction (SCC) in the framework of the standard fewest switches surface hopping (FSSH) and the global flux surface hopping (GFSH). The resulting SCC-FSSH and SCC-GFSH approaches show much better performance than the counterparts using all adiabatic states for surface hopping. As demonstrated in a series of Holstein models with up to over 1000 molecular sites, both SCC-FSSH and SCC-GFSH show excellent size independence with a large time step size of 1 fs. Especially, SCC-GFSH does not refer to nonadiabatic couplings at all and gives a more proper description of superexchange, and thus, it is promising for realistic applications with complex potential energy surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.