Abstract
A subspace extension algorithm for two-dimensional (2D) direction-of-arrival (DOA) estimation with an L-shaped array is proposed. This L-shaped array is comprised of two orthogonal sparse linear arrays (SLAs). Each SLA consists of two different uniform linear arrays. The cross-correlation matrix of received data is used to construct two extended signal subspaces, by which the azimuth angles and elevation angles can be estimated independently. The procedure used to extend signal subspace only needs a small amount of calculation. Then, an effective pair-matching method is addressed to pair the estimated elevation angles and azimuth angles. Although the signal subspaces are extended, the complexity of the proposed 2D DOA estimation algorithm is lower than many similar algorithms. Simulation results indicate the availability of the proposed pairing-matching method and subspace extension algorithm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.