Abstract

We present a high-dimensional analysis of three popular algorithms, namely, Oja's method, GROUSE and PETRELS, for subspace estimation from streaming and highly incomplete observations. We show that, with proper time scaling, the time-varying principal angles between the true subspace and its estimates given by the algorithms converge weakly to deterministic processes when the ambient dimension $n$ tends to infinity. Moreover, the limiting processes can be exactly characterized as the unique solutions of certain ordinary differential equations (ODEs). A finite sample bound is also given, showing that the rate of convergence towards such limits is $\mathcal{O}(1/\sqrt{n})$. In addition to providing asymptotically exact predictions of the dynamic performance of the algorithms, our high-dimensional analysis yields several insights, including an asymptotic equivalence between Oja's method and GROUSE, and a precise scaling relationship linking the amount of missing data to the signal-to-noise ratio. By analyzing the solutions of the limiting ODEs, we also establish phase transition phenomena associated with the steady-state performance of these techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.