Abstract

In this paper, we employ several subspace representations (principal component analysis, unsupervised discriminant projection, kernel class-dependence feature analysis, and kernel discriminant analysis) on our proposd discrete transform encoded local binary patterns (DT-LBP) to match periocular region on a large data set such as NIST's face recognition grand challenge (FRGC) ver2 database. We strictly follow FRGC Experiment 4 protocol, which involves 1-to-1 matching of 8014 uncontrolled probe periocular images to 16 028 controlled target periocular images (~128 million pairwise face match comparisons). The performance of the periocular region is compared with that of full face with different illumination preprocessing schemes. The verification results on periocular region show that subspace representation on DT-LBP outperforms LBP significantly and gains a giant leap from traditional subspace representation on raw pixel intensity. Additionally, our proposed approach using only the periocular region is almost as good as full face with only 2.5% reduction in verification rate at 0.1% false accept rate, yet we gain tolerance to expression, occlusion, and capability of matching partial faces in crowds. In addition, we have compared the best standalone DT-LBP descriptor with eight other state-of-the-art descriptors for facial recognition and achieved the best performance. The two general frameworks are our major contribution: 1) a general framework that employs various generative and discriminative subspace modeling techniques for DT-LBP representation and 2) a general framework that encodes discrete transforms with local binary patterns for the creation of robust descriptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.