Abstract

A new signal subspace approach for estimating the frequency of a single complex tone in additive white noise is proposed in this correspondence. Our main ideas are to use a matrix without repeated elements to represent the observed signal and exploit the principal singular vectors of this matrix for frequency estimation. It is proved that for small error conditions, the frequency estimate is approximately unbiased and its variance is equal to Cramer-Rao lower bound. Computer simulations are included to compare the proposed approach with the generalized weighted linear predictor, periodogram, and phase-based maximum likelihood estimators in terms of estimation accuracy, computational complexity, and threshold performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.