Abstract

The main objective of this work is to reduce the volumetric locking pathology at the Element Free Galerkin (EFG) 3D solid-shell meshless method. For this purpose, a subspace analysis is performed in order to extract the linearly independent incompressible deformation modes that can be reproduced by different background integration cells. Additional deformation modes reproduced by a cell configuration produces more flexibility for the meshless formulation. The Enhanced Assumed Strain (EAS) method is blended with the EFG formulation in such a way that additional (mathematical) variables are included in the formulation increasing its flexibility for nearly incompressible materials. Three numerical examples show the effect of the EAS formulation in alleviating the locking pathology for an almost incompressible material condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.