Abstract

We perform friction experiments between a compliant gel and a rigid cylinder at sliding velocities comparable to the Rayleigh wave or secondary wave velocity of the gel. We find that, when the sliding velocity exceeds the wave velocities, the contact state transitions from Hertzian like to flat punch like, resulting in the breakdown of the lubricating oil film and the abrupt increase in the friction coefficient. We succeed in deriving theoretical solutions for the contact pressure distributions and the deformation profiles in the presence of friction, which are consistent with our experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.