Abstract

Three-component systems constitute the physicochemical basis of most refractory materials and the analysis of their subsolidus structure makes it possible to accurately predict the areas of compositions with optimal properties, as well as give recommendations on the technological parameters of production, sintering, and operation of the materials obtained. As a result of the carried out thermodynamic analysis of the MgO – FeO – Al2O3 system, it was found that the partition of the system into elementary triangles undergoes changes in two temperature ranges: I – up to a temperature of 1141 K and II – above a temperature of 1141 K. By calculation methods, the geometrical-topological characteristics of the subsolidus structure of the system are determined MgO – FeO – Al2O3: areas of elementary triangles, degree of their asymmetry, area of regions in which phases exist, probability of phase existence in the system. It has been established that, over the entire temperature range, there is a fairly extended concentration region of spinel phases: hercynite (FeAl2O4) – noble spinel (MgAl2O4). Moreover, periclase (MgO) coexists simultaneously with both spinels only in the low-temperature region. This indicates that when obtaining periclase-spinel refractories with increased heat resistance, an important technological parameter is a cooling rate below 1141 K. To obtain periclase-spinel refractories with branched microcracking of the structure due to differences in the thermal expansion coefficients of periclase, hercynite and noble spinel, the most rational concentration region of the system under study is which is common for two elementary triangles (MgO – FeAl2O4 – MgAl2O4 and MgO – FeO – MgAl2O4) existing in different temperature ranges. At high firing temperatures, the elementary triangle MgO – FeO – MgAl2O4 has a maximum area and a minimum degree of asymmetry, and upon cooling, MgO – FeAl2O4 – MgAl2O4 is formed, which is quite large in area, but has a high degree of asymmetry. Therefore, the composition of the charge for periclase-spinel refractories should be predicted with a high dosage accuracy and with a significant homogenization time of the components during mixing, since the concentration region common for both of the above elementary triangles is significantly reduced. Thus, the division of the MgO – FeO – Al2O3 system into elementary triangles and the analysis of the geometrical-topological characteristics of the phases of the system made it possible to select in the system under study the range of compositions with optimal properties for obtaining spinel-containing materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call