Abstract

We theoretically study the phase sensitivity of an SU(1,1) interferometer with a thermal state and a squeezed vacuum state as inputs and parity detection as the measurement. We find that the phase sensitivity can beat the shot-noise limit and approaches the Heisenberg limit, with increasing input photon number, in an ideal situation. We also consider the effect of various noises, including photon loss, dark counts, and thermal photon noise. Our results show that the phase sensitivity is below the shot-noise limit with photon loss and dark counts, but cannot beat the shot-noise limit in the presence of thermal noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.