Abstract

The generation of stress waves induced by explosions underground is governed by material nonlinear responses of materials surrounding explosions and affected by source region mediums and local structures. A nonlinear finite element (NFE) method can simulate the generation efficiently. However, the calculation using the NFE to observational distances, where motions are elastic, is computationally challenging. In order to tackle this problem, we present a subsection numerical simulating method for forward modelling the generation and propagation of stress waves with a hybrid method coupling the NFE and a linear finite element (LFE). The subsection idea is developed based on previous works; calculating steps of the subsection method as well as techniques of passing motions from a source region to an elastic region are discussed. 3D numerical simulations of stress wave propagation in rock generated by decoupled explosion underground with two methods for comparison are carried out. The accuracy of the subsection method is demonstrated with simulated results. The demand of PC memory and the calculating time are investigated. The subsection method provides another approach for modeling and understanding the generation and propagation of explosion-induced stress waves, though, currently, studies are preliminary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.